

Construction Analysis for Pavement Rehabilitation Strategies

Tutorial Training Workshop

Spring 2006

Dr. E.B. Lee
University of California at Berkeley
Institute of Transportation Studies

Introduction - Who We Are

- Questionnaires: Pre-evaluation
- Sign-up Sheet, Name Tag, Course binder/CD
- Introduction: Name, Background, Office
- CA4PRS Research Project since 1998
- Sponsored by SPTC: State Pavement Technology Consortium (CA/FL/MN/TX/WA) - FHWA Pooledfund Program
- Leader Caltrans HQ Design and DRI (Division of Research)
- Hands-on Tutorial Training: Project Level
- Metropolitan Districts: D3, D4, D7, D8, D12

Course Outline & Contacts

- Course Binder Overview + Installation
- Web Information Source
- http://www.dot.ca.gov/research/roadway/ca4prs/ca4prs.htm
 http://onramp.dot.ca.gov/newtech/offices/materials_and_infrastructure/rmi_branch/
- Michael Samadian: HQ DRI
 - Tel: 916-324-2048
 - Michael M Samadian@dot.ca.gov
- Dr. E.B. Lee: UCB ITS
 - Tel: 510-665-3637
 - eblee@berkeley.edu,
 - http://www.ce.berkeley.edu/~eblee/

Course Schedule -Day 1

8:30 – 9:00 a.m.	Course Introduction
9:00 – 9:50 a.m.	CA4PRS Overview Presentation
9:50 – 10: 00 a.m.	AM Break 1
10:00 – 11:00 a.m.	Tutorial 1: PCC (Concrete I)
11:00 – 11:10 a.m.	AM Break 2
11:10 – 12:00 p.m.	Tutorial 2: PCC (Concrete II)
12:00 – 1:00 p.m.	Lunch
1:00 – 2:00 p.m.	Tutorial 3: CSOL (AC Overlay)
2:00 – 2:10 p.m.	PM Break 1
2:10 – 3:00 p.m.	Tutorial 4: FDAC (Full-depth AC)
3:00 – 3:10 p.m.	PM Break 2
3:10 – 4:20 p.m.	LLPRS Pilot Projects
4:20 – 4:30 p.m.	Day 1 Wrap up

Course Schedule - Day 2

9:00 – 10: 15 a.m.	Lab Exercise 1: PCC Projects
10:15 – 10: 30 a.m.	AM Break
10:30 – 12:00 p.m.	Lab Exercise 2: AC Projects
12:00 – 1:00 p.m.	Lunch
1:00 – 2:15 p.m.	Lab Exercise 3: District Projects
2:15 – 2:30 p.m.	PM Break
2:30 – 3:45 p.m.	Design-Construction-Traffic: Integrated Analysis
3:45 – 4:00 p.m.	Course Evaluation and Closing

Э

CA4PRS Model Overview

- Development Background
- Modeling Structure
- Analysis Process
- Input & Output Interfaces
- Implementation Projects
- Tech Transfer Efforts
- Discussion

Pavement Failure

30 to 50 year old pavements require maintenance and rehabilitation at shorter and shorter intervals.

Maintenance and rehabilitation are less effective when underlying structure reaches advanced deterioration.

Caltrans Long-life Pavement Rehabilitation: LLPRS

- > Deterioration of Aging Pavement : Built in '50s-'70s
- >75% traffic growth and 4% mileage expansion (last 20 years)
- > Adverse Effects on Quality, Safety, Costs
- Long-life Pavement Rehabilitation Strategies
 - To rebuild 2,500 lane-km of segments among 78,000 lane-km
 - Candidate projects are mostly PCC pavements in the LA & SF
 - Criteria: Poor structural and ride quality => 150,000 (???)
 Average Daily Traffic (ADT) or 10% Trucks
- >LLPRS Objectives and Practice: Get-in, get-out, stay-out
 - Provide 30-40 years of design-life with minimum maintenance
 - Accelerated fast-track construction
 - Minimizing CWZ impact on traffic delay and local business

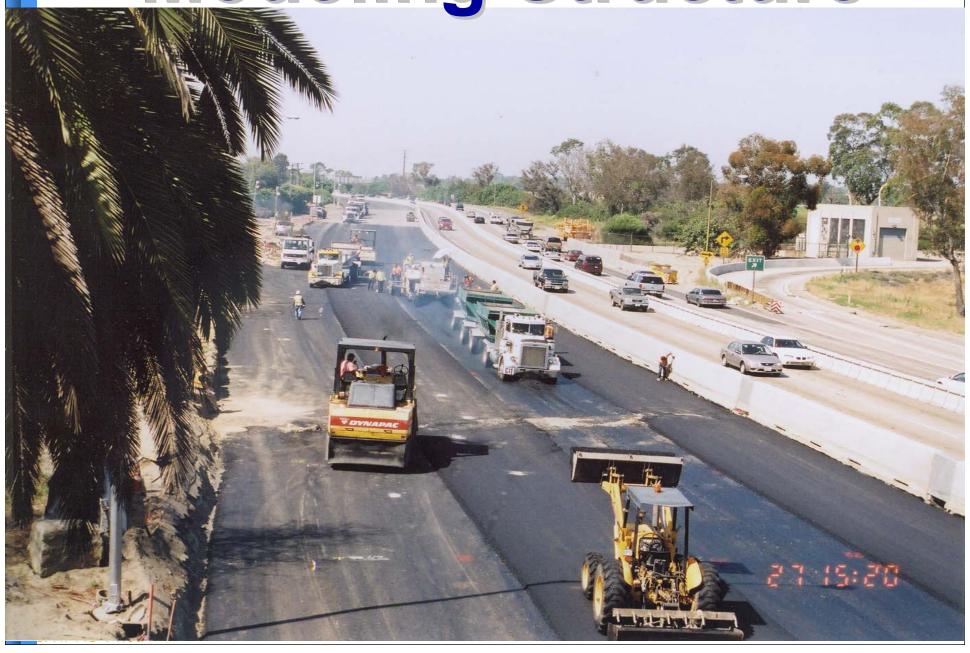
CA4PRS Capability and Platform

> Mission

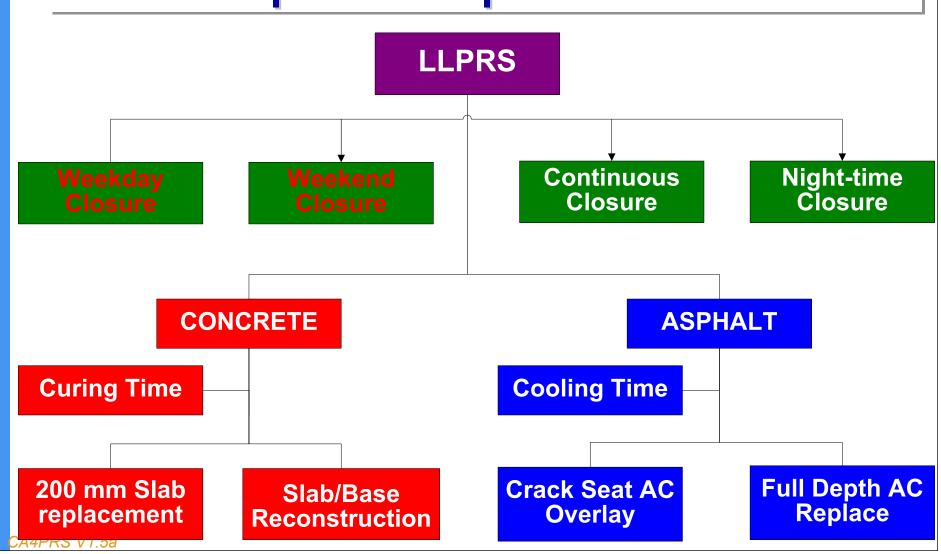
- Decision support tool for LLPRS projects
- Integrates <u>design</u>, <u>construction</u>, and <u>traffic</u> analyses to balance competing objectives: Long-life Pavement with Fast-track Construction and Minimum Traffic Disruptions

> Analysis Features

- Estimates optimized schedule (duration) of rehabilitation
- Check traffic impact (Road user cost and queue delay)


> System Platform

- MS Windows application
- Stand-alone or Network-server
- Platform: Access database with Visual Basic 6.0
- Stores historical reference data from case studies


Where Can CA4PRS be Used in a Rehab Project?

- Planning: Pre-construction Evaluation
 - "What-if" rehabilitation scenarios
 - Value Analysis Tool => PSSR
- Design: Construction & Traffic Management Plans
 - Construction-staging plan
 - CPM schedule and contingency plan
 - "A+B (working days)" and Incentives contract
 - Supplement PS&E Package
- Construction: Contractor's work plan
 - Improve constructability constraints
 - Assess the request of contract change orders

Modeling Structure

Typical Caltrans Concrete LLPRS Cross-section Changes

Existing Profile

New Profile

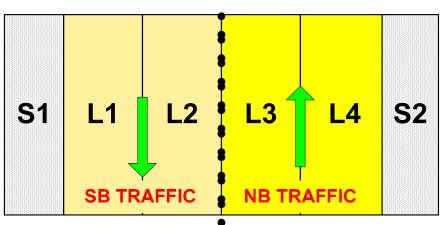
CONCRETE	203mm (8")
СТВ	102mm (4")
АВ	305mm (12")
SG	

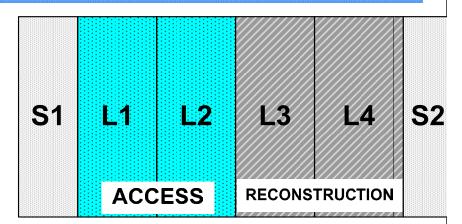
CONCRETE	203mm (8")
СТВ	102mm (4")
АВ	305mm (12")
SG	

(a) 203 mm Concrete Slab

CONCRETE	205mm (8")
СТВ	102mm (4")
AB	305mm (12")
SG	

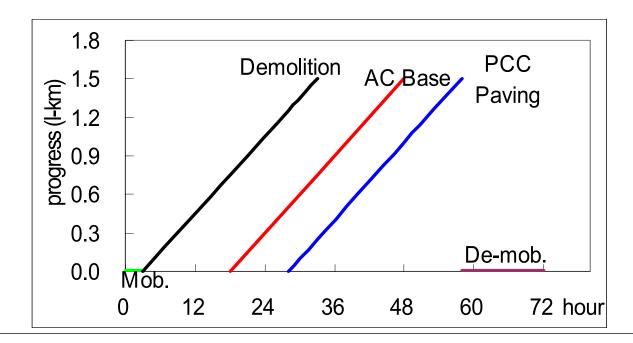
CONCRETE	305mm (12")
LCB/ACB	152mm (6")
AB	152mm (6")
SG	

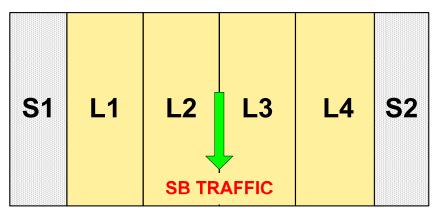

(b) 305 mm Concrete Slab


Removed

Retained

New PCC New Base

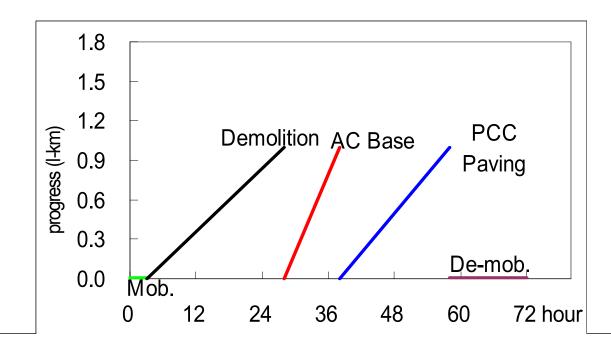

Full Closure (Counter-flow Traffic) PCC Concurrent Double-lane Rehabilitation


Traffic Roadbed

Construction Roadbed

CA4PRS V1.5a

Half or Partial Closure PCC Sequential Single-lane Rehabilitation



S1 L1 L2 L3 L4 S2

NB TRAFFIC ACCESS RECONSTRUCTION

Traffic Roadbed

Construction Roadbed

CA4PRS V1.5a

Typical Asphalt LLPRS Cross Section (CSOL and Full-depth AC)

Crack-seat & AC Overlay

Total thick. = 230 mm (9")

Thick.

25 mm

75 mm

75 mm

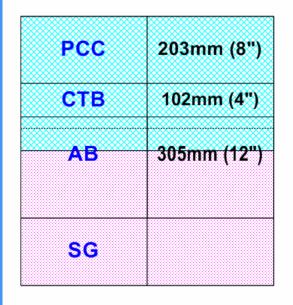
Layer

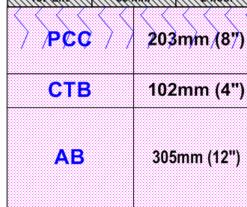
3rd Lift

2nd Lift

Cooling

0.5 hour


4 hour


4 hour

AC(CSOL)

OR

Existing Pavement

Fabric

SG

Retained

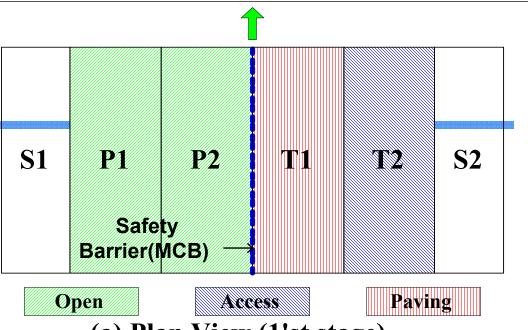
Full-Depth AC replacement

Total thick.=330mm (13")				
Layer	Thick. Cooling			

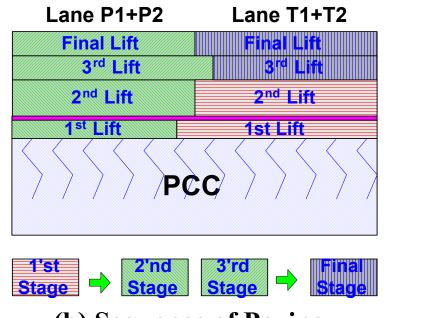
25 mm

4 Litt	76 mm		1.5 nour
3 rd Lift	77 r	nm	6.5 hour
2 nd Lift	76 r	nm	2 hour
1st Lift	76 mm		1 hour
АВ			79mm (11")
SG			

Removed

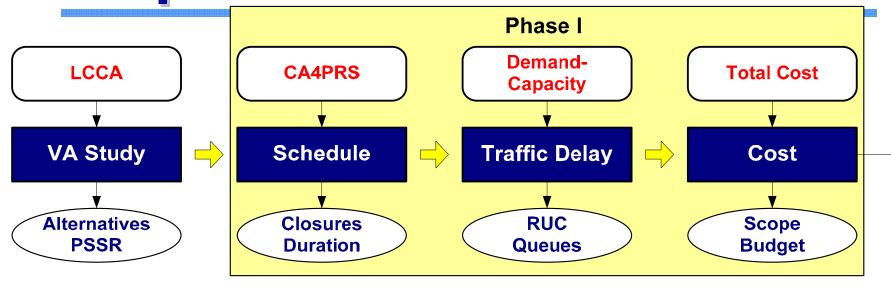

Retained

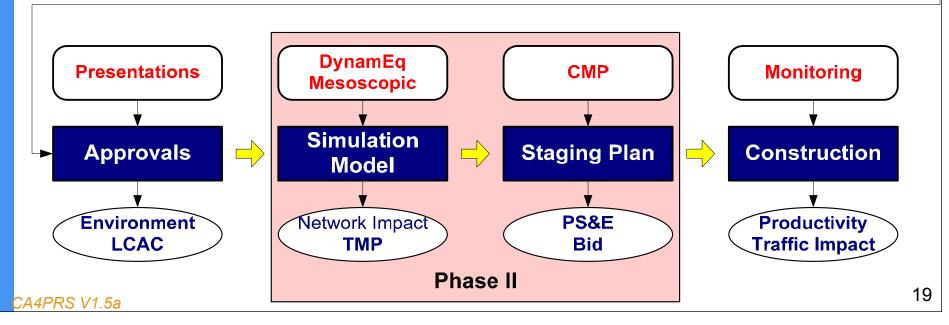
AC


0.5 hour

Lane Closures (CSOL)

- 1. Full Closure + Full Completion
- 2. Half Closure + Full Completion
- 3. Half Closure + Partial Completion


(a) Plan View (1'st stage)



Analysis Process

Framework for CA4PRS Implementation on LLPRS

Step 1: *CA4PRS* Production and Schedule Analysis

- Input 1: Pavement Design
 - Rehabilitation strategy alternatives
 - cross-section and materials alternatives
- Input 2: Traffic Control & Operations
 - Construction widows (Closure timing)
 - Lane closure alternatives
- Input 3: Construction Constraints
 - Activity lead-lag time relationships
 - Construction resources logistics
 - Weather (AC Cooling time, PCC curing time)
- CA4PRS Outputs
 - Maximum rehabilitation production (lane-km)
 - Total closures and project duration
 - Parameters sensitivity

Step 2: Traffic Delay Analysis Road User Cost + Maximum Delay

- Incorporated Traffic Analysis Tools
 - Highway Capacity Manual (Spreadsheet)
 - Macro Simulation: FREQ
 - Microscopic Simulation: Paramics
- Needed Additional Traffic Information
 - Geometry
 - Demand
 - Capacity
 - Traffic Demand Control
- Traffic Analysis Outputs
 - Total Road User Cost (RUC)
 - Maximum Delay per Closure
 - Demand Sensitivity

Step 3: Economic Analysis Total Cost = Agency + Road User Costs

- Comparison of Alternative Scenarios
 - Select the Most Economical Rehabilitation Scenarios
- Total Cost: Economic Analysis
 - Total cost = RUC + Agency cost
 - Agency Cost = Construction + Traffic Handling
 - Apply a Discount Factor for Road User Cost
- Other Qualitative Aspects
 - Pavement Life Expectancy: LCCA
 - Environmental Aspects
 - Public Perception
 - Impact on Local Business

Step 4: Economic Analysis Total Cost = Agency + Road User Costs

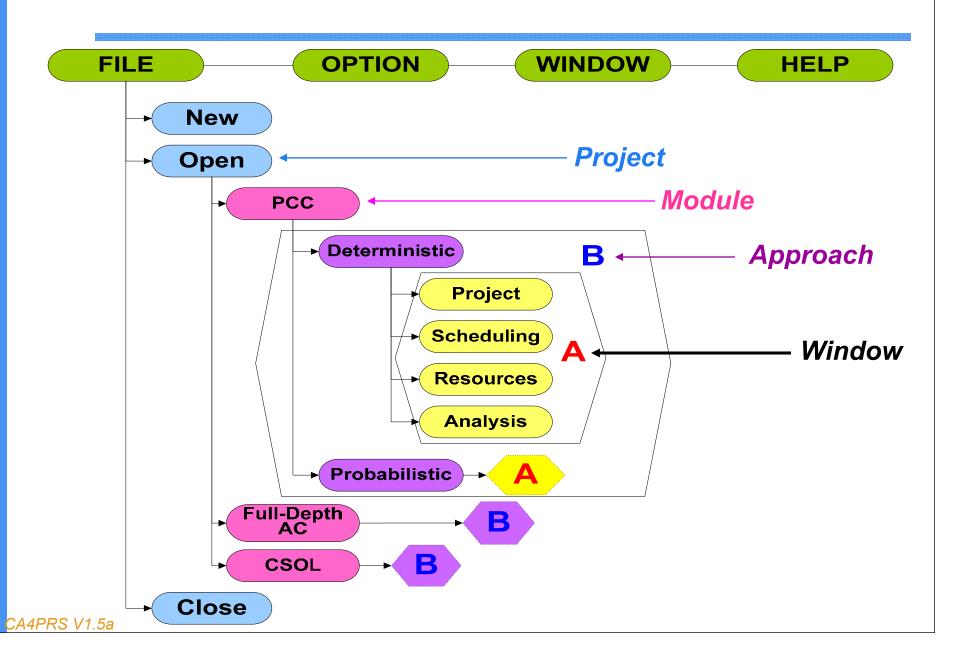
- Comparison of Alternative Scenarios
 - Select the Most Economical Rehabilitation Scenarios
- Total Cost: Economic Analysis
 - Total cost = RUC + Agency cost
 - Agency Cost = Construction + Traffic Handling
 - Apply a Discount Factor for Road User Cost
- Other Qualitative Aspects
 - Pavement Life Expectancy: LCCA
 - Environmental Aspects
 - Public Perception
 - Impact on Local Business

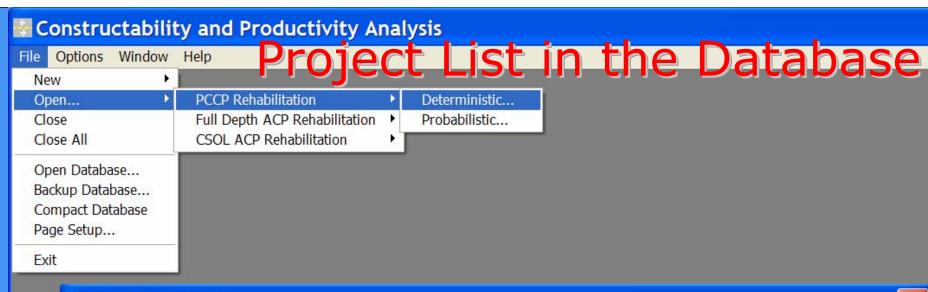
Step 5: Preferred ScenarioConstruction & Traffic Management Plans

Construction Management Plan

- Rehabilitation Scope and Process
- CPM Schedule
- Contingency Plan
- Incentives and "A + B" (Cost/Schedule) Contract

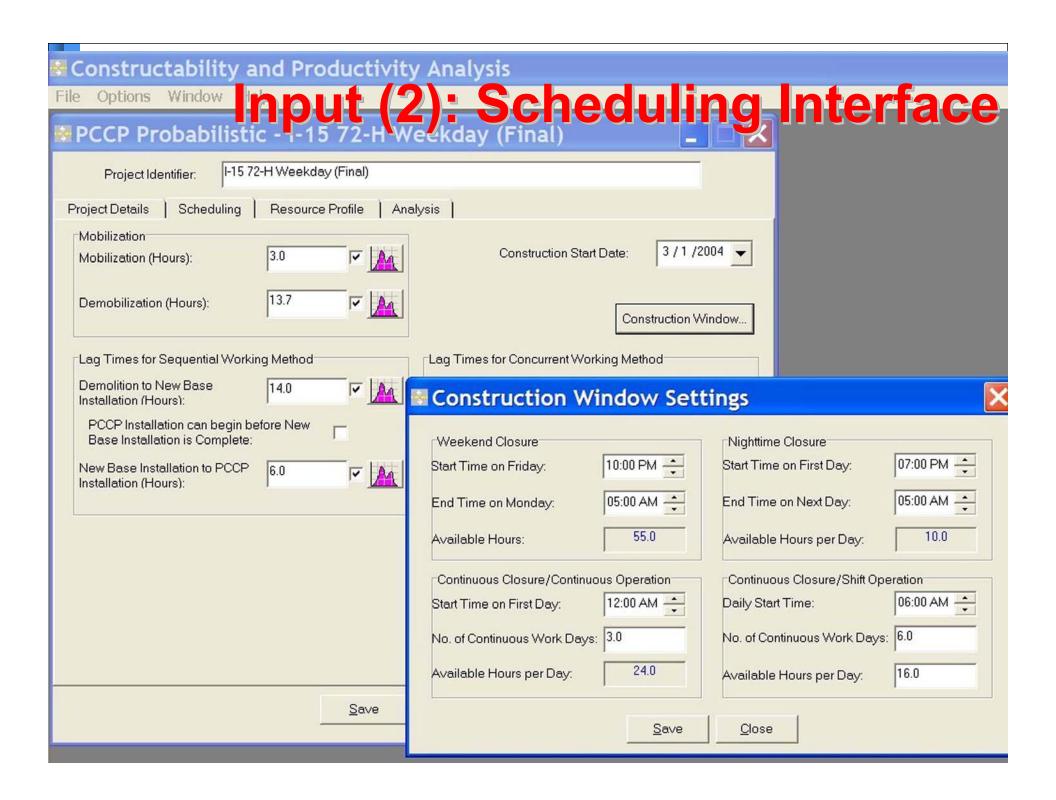
Traffic Management Plan

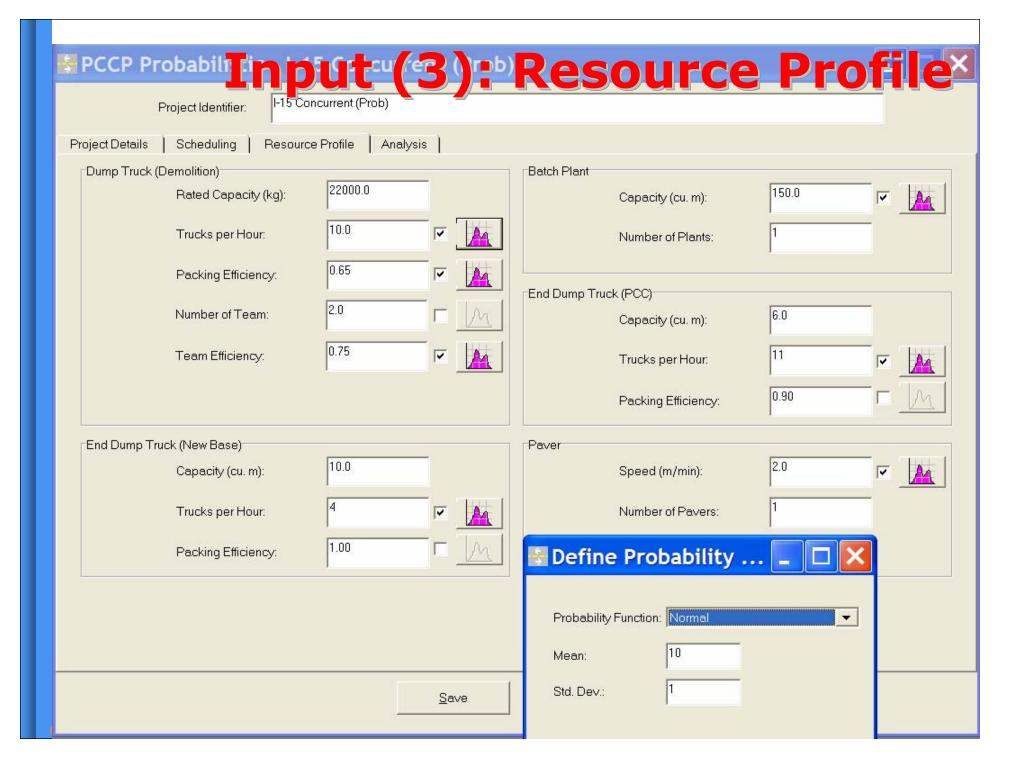

- Automatic Workzone Information Systems
- Detour Plans
- Public Outreach: Demand Reduction
- Lane Closure Charts: Lane, Ramp, Connector

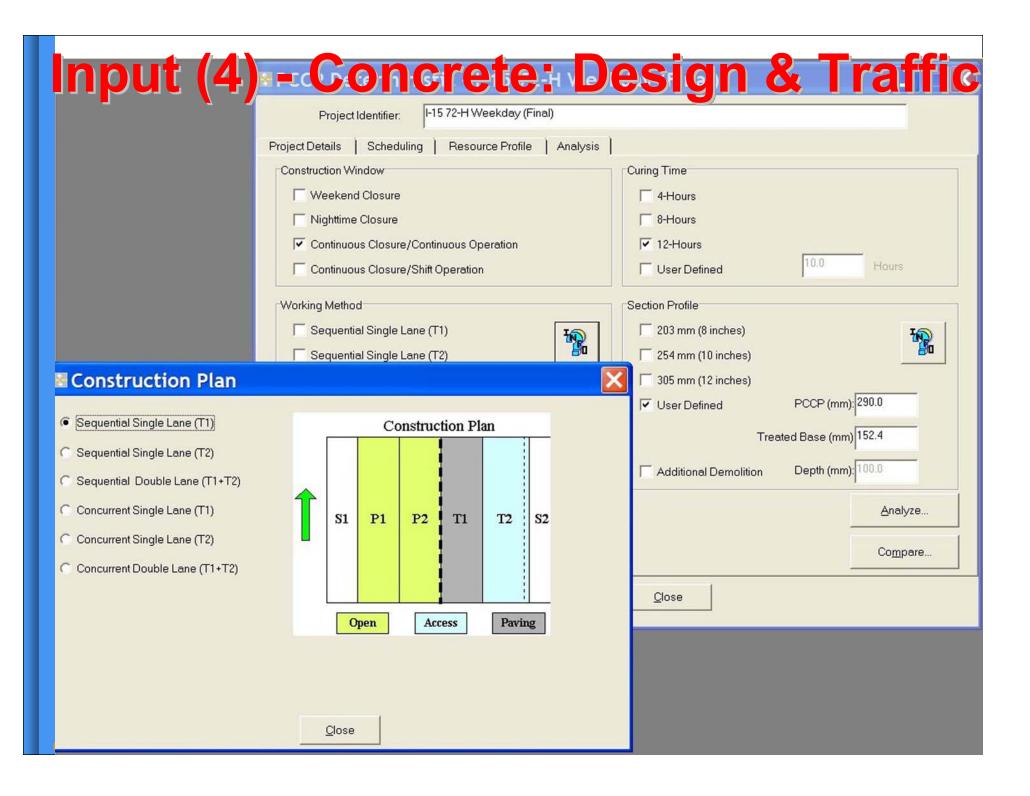

Implement Public Outreach

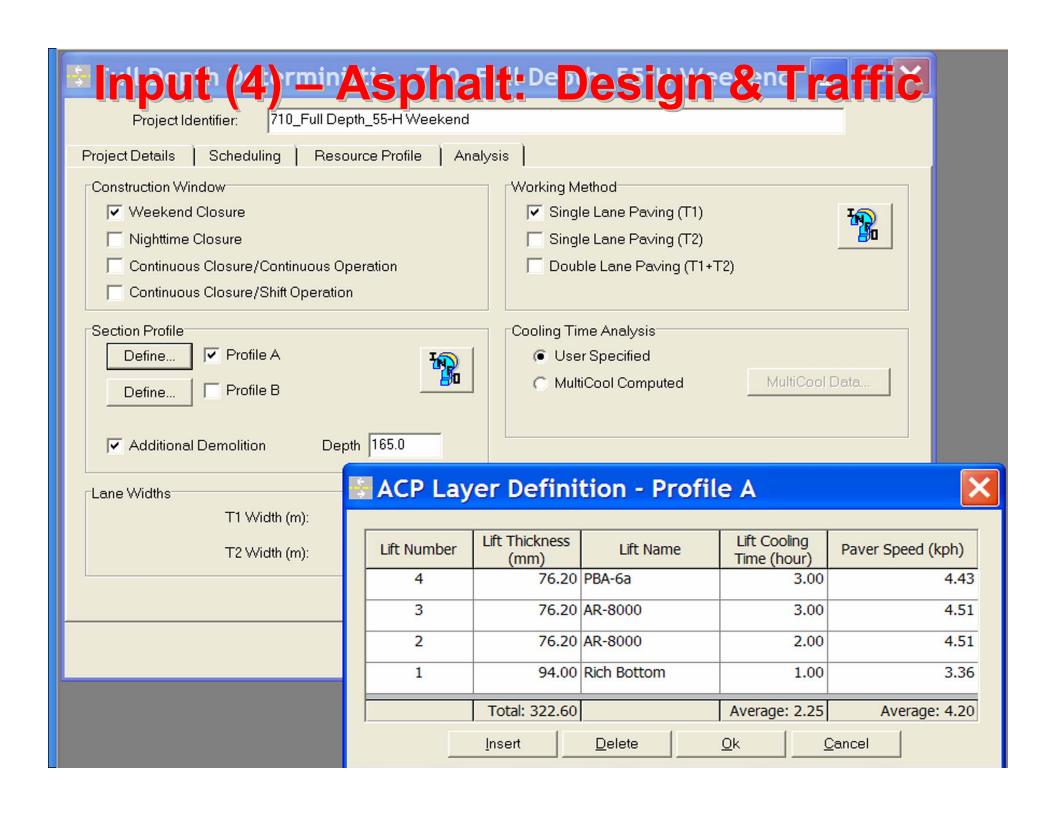
Input & Output Interfaces

CA4PRS Software Menu Tree

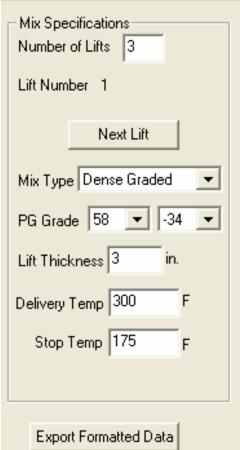

Saved Projects

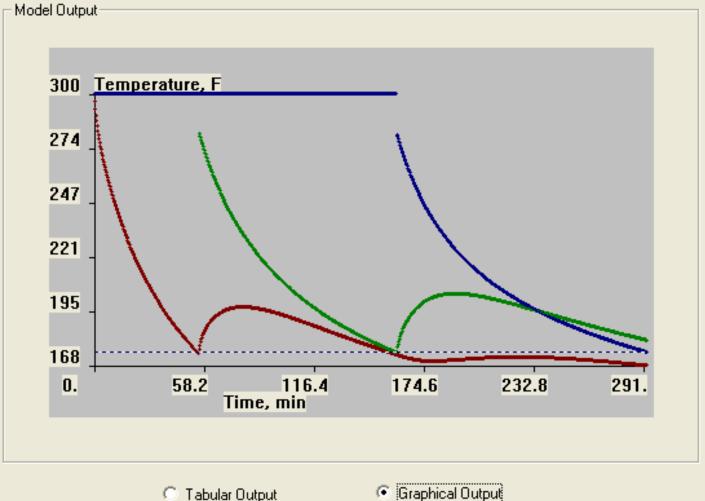



Analysis Type	Project Identifier	Route Name	Analysis Date	Project Description
Deterministic	I-15 10-H Nighttime with FSHCO	I-15 Devore, San Bı	3/4/2002	Caltrans District 8 Demonstration Project (Nighttime Closur
Deterministic	I-15 72-H Weekday (Final)	I-15 Devore, San Be	3/18/2003	Caltrans District 8 Concrete Demonstration Project
Deterministic	I-15 72-H DEMO (Back-Up)	I-15 Devore, San Be	3/18/2003	Caltrans District 8 Concrete Demonstration Project
Deterministic	Workshop Concrete Exercise	Interstate-5	9/3/2003	Caltrans District 7
Deterministic	I-15 72-H (DEMONSTRATION)	I-15 Devore, San Be	3/18/2003	Caltrans District 8 Concrete Demonstration Project
Deterministic	I-15 Revised (Concurrent)	I-15 Devore, San Be	3/18/2003	Caltrans District 8 Concrete Demonstration Project
Probabilistic	I-15 72-H Weekday (Final)	I-15 Devore, San B	3/18/2003	Caltrans District 8 Concrete Demonstration Project
Deterministic	I-15 Revised (Sequential)	I-15 Devore, San Be	3/18/2003	Caltrans District 8 Concrete Demonstration Project
Probabilistic	I-15 Devore One-Roadbed Co	I-15 Devore, San B	3/18/2003	Caltrans District 8 Concrete Demonstration Project
Deterministic	I-710 Phase II	I-710 from 405 to F	3/18/2003	Dig Out with PCC
Deterministic	I-15 Devore Continuous Closure	I-15 Devore, San Be	3/18/2003	Caltrans District 8 I-15 Devore Truck-lane Reconstruction-


Ok Copy Delete Cancel

Constructability and	
File Options Window Help	Input (1): Project Details
Project Identi Abou	Continuous Closure the For Help On nical Support the CA4PRS Source - Tolling Tankaysis
Project Description:	Caltrans District 8 I-15 Devore Truck-lane Reconstruction-Continuous Closure
Analyst Name:	EB Lee Analysis Date: 3 /18/2003
Route Name:	I-15 Devore, San Bernardino
Begin KM:	206.00 End KM: 258.70
Objective (lane-km):	10.50 Unit
Location:	Deveore, San Bernardino, County, CA
Project Notes:	Freeway has 3-4 lanes for each direction. The outer trucklen for each direction will be reconstructed Construction = 4.3 km Stretch (Segment 1 = 2.5km) Old Pavement = 8" PCC + 4" CTB New Pavement = 12" PCC + 6" AC Base
	Save Close





Multicool for AC Cooling-time Check

ment Cooling Program

Resource Utilization - I-15 72-H Weekday (Final) Project Coutputs

Production Details

Production Chart | Gantt Chart |

Construction Window:	Continuous Closure/Continuous	
Working Method:	Concurrent Double Lane (T1+T2)	
Section Profile:	PCCP: 290.0 mm, New Base: 152.4	
Curing Time:	12-Hours	
Objective (lane-km):	17.00	
Maximum Possible (lane-km):	2.56	

N/A

Resource	Allocated	Utilized
Dump Truck (per hour)	10.0	8.4
End Dump Truck (New Base)	8.0	6.3
Batch Plant (cu-m/hour)	150.0	84.0
End Dump Truck (PCC) (per	14.0	14.0
Paver Speed (m/min)	2.0	0.6

1.28 Maximum Possible (c/l-km):

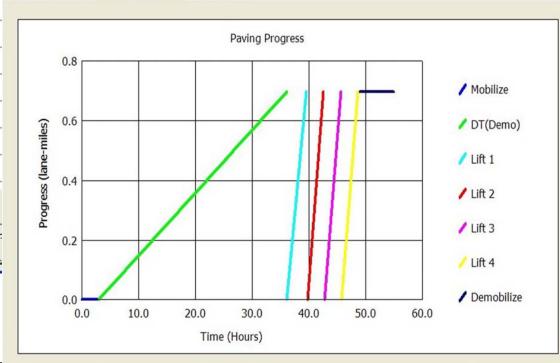
Construction Windows Needed 6.64

Demolition Quantity (cu. m): 4485.0

New Base Quantity (cu. m): 1545.0

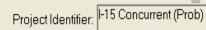
Concrete Quantity (cu. m): 2940.0

Constraint Resource:


Demolition to Paving:

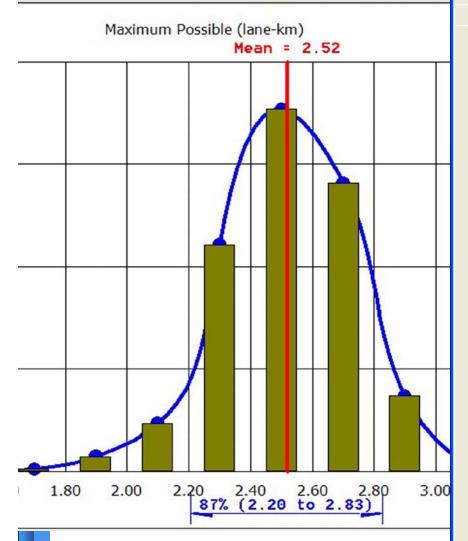
Demolition Hours: 35.0

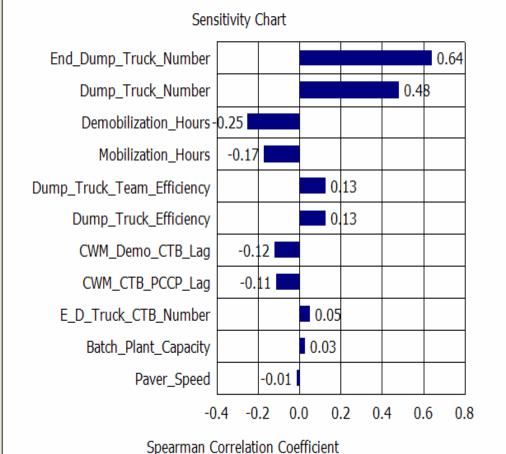
Paving Hours: 35.0 Project Identifier: 710_Full Depth_55-H Weekend


Production Details

Production Chart | Gantt Chart

Probabil stie Outputsrent (Prob)



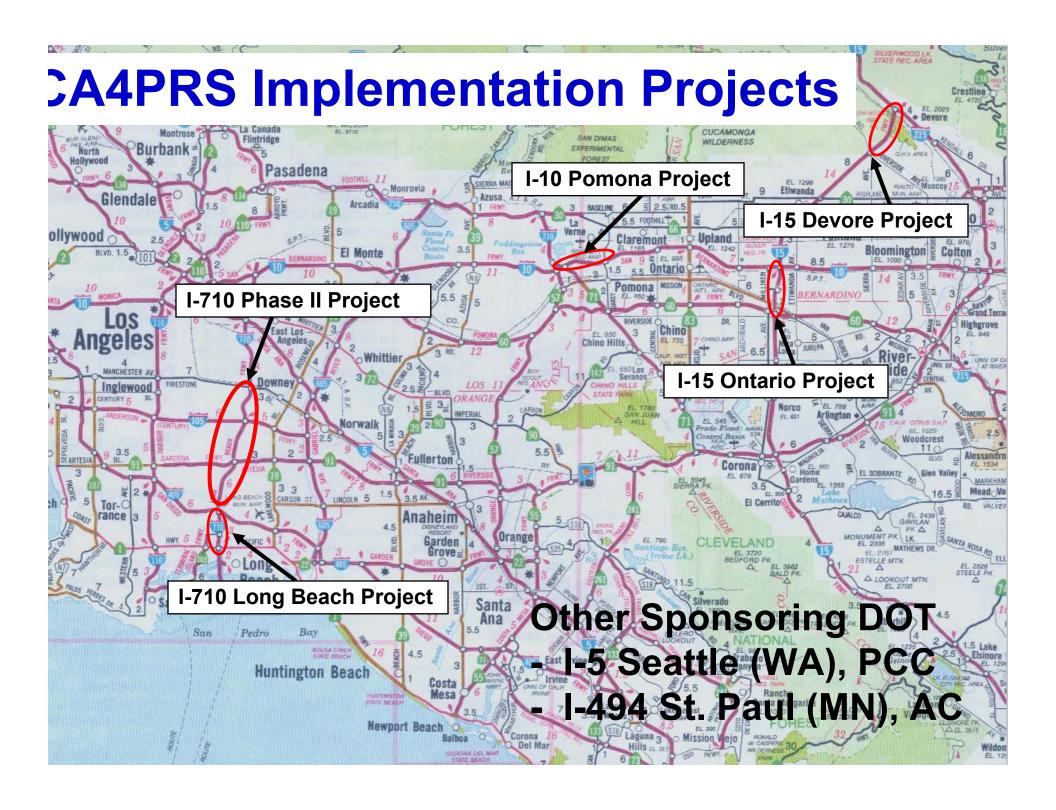


Production Details

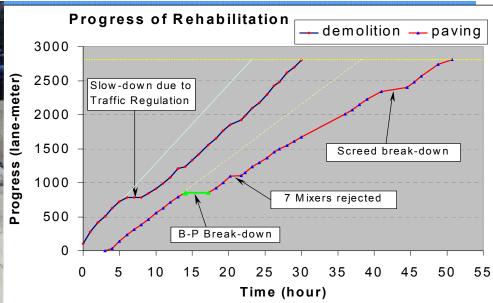
Production Distribution Chart

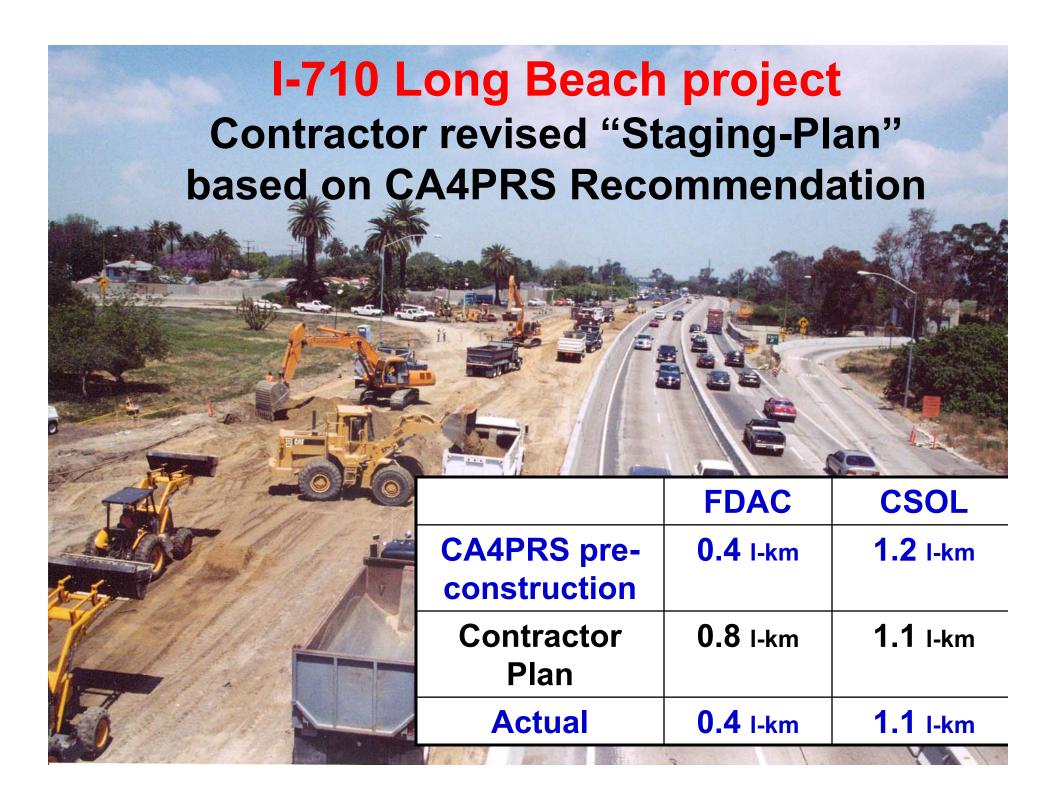
Sensitivity Chart

Alternatives Comparison - I-15 72-H (DEMONSTRATION)


Construction Window	Section Profile	Curing Time	Working Method	Maximum Possible (lane-km)	Constraint Resource	Construction Windows	Total Working Hours
Weekend Closure (55 Hours/Weekend)	203 mm (8 inches)	4-Hours	Concurrent Double Lane (T1+T2)	4.84	EDT(New Base),	3.51	193.0
		12-Hours		4.12	EDT(New Base),	4.13	227.1
	305 mm (12 inches)	4-Hours		2.06	DT(Demo)	8.26	454.1
		12-Hours		1.65	DT(Demo)	10.32	567.6
Nighttime Closure (15 Hours/Day)	203 mm (8 inches)	4-Hours		0.00	N/A	N/A	N/A
		12-Hours		0.00	N/A	N/A	N/A
	305 mm (12 inches)	4-Hours		0.00	N/A	N/A	N/A
		12-Hours		0.00	N/A	N/A	N/A
Continuous Closure/Continuous Operation (72 Hours/Closure)	203 mm (8 inches)	4-Hours		6.90	EDT(New Base)	2.46	177.3
		12-Hours		6.18	EDT(New Base),	2.75	198.2
	305 mm (12 inches)	4-Hours		3.23	DT(Demo)	5.27	379.4
		12-Hours		2.81	DT(Demo)	6.04	435.0

Production Comparison Analysis


Implementation (CA, MN, TX, WA)


I-10 Pomona Project CA4PRS Verification

55-hour Weekend Production

- Contractor's Plan = 3.5 lane-km
- CA4PRS Estimate = 2.9 lane-km (2.4-3.4)
- Actual Performance = 2.8 lane-km

I-15 Devore Selected the Most Economical Scenario: Schedule, Traffic Delay, Total Costs

	Construction	Schedule Comparison		Cost Comparison (\$M)			Max. Peak
	Scenario	Total Closures	Closure Hours	User Delay	Agency Cost	Total Cost	Delay (Min)
	1 Roadbed Continuous	2	400	<i>5.0</i>	15.0	20.0	80
	72-Hour Weekday Continuous	8	512	5.0	16.0	21.0	50
	55-Hour Weekend Continuous	10	<i>550</i>	10.0	17.0	27.0	80
	10-Hour Night-time Closures	220	2,200	7.0	21.0	28.0	30

Public responses changed 72-hour closures scheme to one-roadbed continuous scenario

EXCELLENCE IN TRANSPORTATION AWARD

PRESENTED TO

UC Berkeley - ITS

CATEGORY

Transportation Innovations

PROJECT

I-15 Devore Rapid Rehab

Certificate of Appreciation

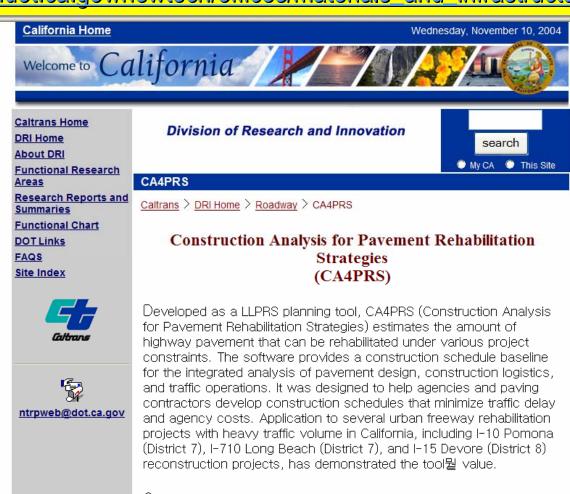
The California Department of Transportation presents this award to:

F.B. Lee.

For your cooperation and support of the I-15 Devore Rapid Rehab Project.

Coming together is a beginning... Keeping together is progress...

Working together is a Success.



Technology Transfer

http://www.dot.ca.gov/research/roadway/ca4prs/ca4prs.htm

http://onramp.dot.ca.gov/newtech/offices/materials and infrastructure/rmi branch/

CA4PRS considers **what-if** scenarios for major parameters and alternatives, such as the followings:

- Rehabilitation strategy: Portland Cement Concrete (PCC) reconstruction, crack-seat PCC and asphalt concrete overlay (CSOL), or full-depth asphalt concrete replacement (FDAC).
- Construction window: nighttime closures, weekend closure,

Outreach & Tech Transfer

- CAL/APT program to develop prototype
- FHWA pooled-fund to code software
- Validation: CA(I-10, I-710), WA(I-5), and MN(I-94)
- Implementation: D8(I-15 Devore, Ontario), D7(I-710 II)
- HQ Design own and lead
- HQ IT officially approved
- > Public outreach: Brochure, poster, papers
- > Training workshops: 500 engineers since 2003
- > On-line training course in development
- Agency (SPTC, LTAP), Industry, Academia

CA4PRS Continuation Enhancement and Upgrade

- V1.0: Basic rehabilitation strategies
 - Separate HCM spreadsheet for delay calculation
- V1.5: Add Rehabilitation Strategies
 - Userability Improve including the User manual
 - CRCP Rehabilitation
- V2.0: Traffic Analysis (Road User Cost)
 - Embed Demand–Capacity Model
 - Economic analysis (RUC + Agency Cost)
- V2.5: Add More Analysis Capability
 - Interchange Improvement and Roadway Widening
- V3.0: Expand to Life Cycle Cost Analysis
 - > HQ Design: Pavement Design Guideline Manual

More Information

Caltrans DRI Web

http://www.dot.ca.gov/research/roadway/roadway.htm

UC PRC Web

http://www.pavementresearch.berkeley.edu

Contacts

Caltrans Division of Research and Innovation

Michael Samadian: Contract Monitor

Phone: (916) 324-2048

Email: Michael M Samadian@dot.ca.gov

Partnered Pavement Research Center

Dr. E.B. Lee: UC Berkeley ITS

Phone (510) 665-3637

Email: eblee@berkeley.edu

Web: http://www.ce.berkeley/~eblee/